
# **Electric Fiero:**

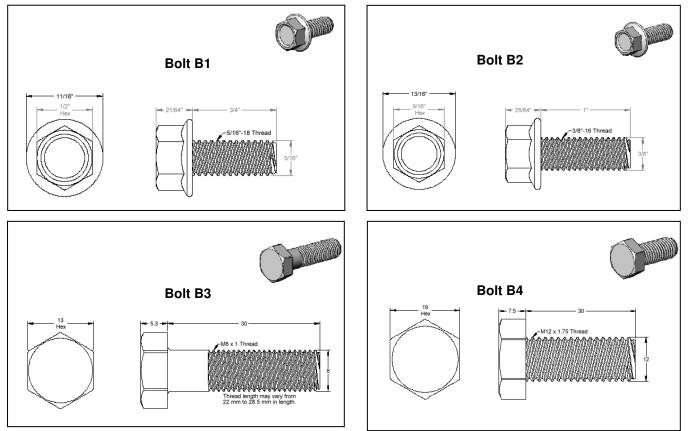
Drive Train Assembly, Dynamic Simulation, and Driving Instructions



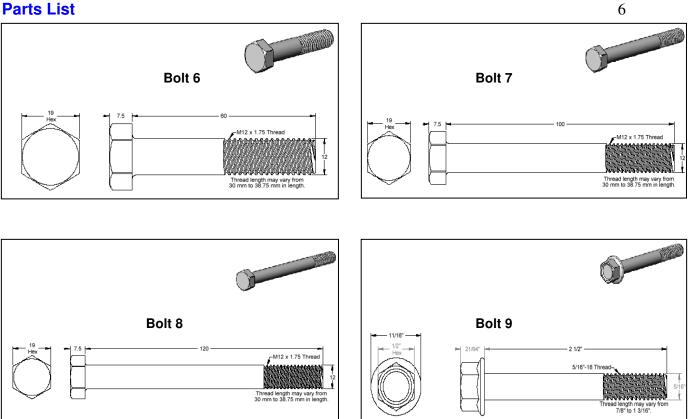
Presented by team BJ CANE: Brett Joseph, John Jolly, Colin Bates, Alex Fabbiano, Nick Smith, and Eric Yost Table of Contents:

# **Parts List**

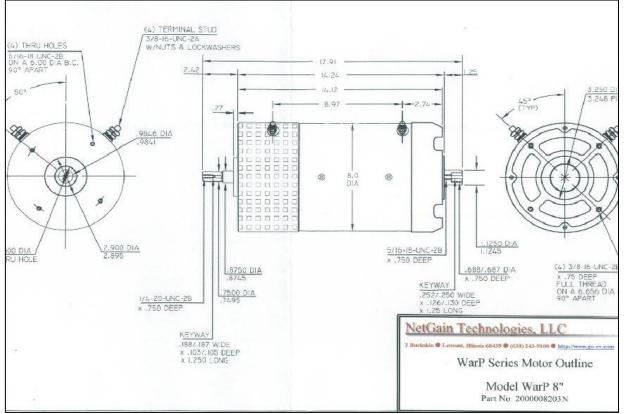
| Parts List                                       | 3  |
|--------------------------------------------------|----|
| Motor Specifications                             | 7  |
| Motor Mounting to Adapter Plates                 | 8  |
| Motor Coupling System Installing                 | 10 |
| Flywheel Installation                            | 13 |
| Clutch & Pressure Plate Installation             | 14 |
| Transmission Mounting to Adapter Plate           | 15 |
| Belt Housing and Adapter Plate Assembly          | 16 |
| Tips for Drive Train Installation                | 19 |
| BJ CANE Vehicle Dynamics Simulation Instructions | 20 |
| Driving Instructions & Tips                      | 23 |


# Parts List

| Part                                 | Part Number    | Item Call Out  | Description                                                    | Quantity |
|--------------------------------------|----------------|----------------|----------------------------------------------------------------|----------|
| Goodyear Eagle Pd Blue Belt          | B-994          | Belt           | Coupling System Pd Belt                                        | 1        |
| Goodyear Eagle Pd Blue Sprocket      | B-30S-MPB      | Sprocket       | Coupling System Sprockets                                      | 2        |
| Custom Lower Sprocket Bushing        | Bush 1         | Bush 1         | Custom made to fit to motor shaft. Also acts as flywheel hub   | 1        |
| Custom Upper Sprocket Bushing        | Bush 2         | Bush 2         | Custom made to fit to motor shaft.                             |          |
| Warp 8" DC Motor                     | Warp 8         | Motor          | Dual Shaft, Advanced Timing DC motor                           | 2        |
| Custom Aluminum Adapter Plates       | P1             | P1             | 6061 Aluminum, 0.25" thickness, connects to transmission       | 1        |
| Custom Aluminum Adapter Plates       | P2             | P2             | 6061 Aluminum, 0.25" thickness, connects to motors (belt side) | ) 1      |
| Custom Aluminum Adapter Plates       | P3             | P3             | 6061 Aluminum, 0.25" thickness, connects to motors (back)      | 1        |
| Custom Plate Support Structures      | S1, S2, S3, S4 | S1, S2, S3, S4 | 6061 Aluminum block spacers between P1 & P2                    | 4        |
| McMaster 1/4" x 1/4" Key             | 98870A405      | K1             | Transmits torque from motor to Hub                             | 2        |
| Flywheel                             | 1988 2.5L 5 Sp | Flywheel       | Original Fiero Flywheel                                        | 1        |
| ClutchNet "E-Z Lock Pro" clutch disk | 65005          | Clutch         | 8.5 in., 3-button, Sprung Hub                                  | 1        |
| ClutchNet Pressure Plate             |                | Pressure Plate | Double Diaphragm Pressure Plate                                | 1        |
| 88 Pontiac Fiero Transmission        | Getrag         | Transmission   | 5-speed Getrag for 2.5L Fiero engine                           | 1        |
| Custom Alignment Pins                | A1             | A1             | Alignment pins for adapter plates to transmission              | 2        |


# **Parts List**

| Part                                    | Part<br>Number | Item Call<br>Out                                     | Description                                 | Quantity |
|-----------------------------------------|----------------|------------------------------------------------------|---------------------------------------------|----------|
| McMaster-Carr Nut                       | 90685A110      | M12 Nut                                              | Black Finish M12 nut                        | 11       |
| McMaster-Carr Split-ring Lock<br>Washer | 91190A570      | M12 Washer                                           | Black Steel M12 Split-ring Lock washer      | 11       |
| McMaster-Carr Bolt                      | 92316A581      | B1                                                   | Grade 8, 3/4 inch, 5/16"-18, fully threaded | 8        |
| McMaster-Carr Bolt                      | 92316A624      | B2                                                   | Grade 8, 1 inch, 3/8"-16, fully threaded    | 8        |
| McMaster-Carr Bolt                      | 91310A538      | B3 Class 10.9, 30mm, M8, partially threaded          |                                             | 12       |
| McMaster-Carr Bolt                      | 91310A712      | B4                                                   | Class 10.9, 30mm, M12, fully threaded       | 6        |
| Pontiac Pressure Plate Bolt             | O98            | B6 Pressure plate to flywheel bolts (already posses) |                                             | 6        |
| McMaster-Carr Bolt                      | 91310A728      | B6                                                   | Class 10.9, 60mm, M12, partially threaded   | 6        |
| McMaster-Carr Bolt                      | 91310A742      | B7                                                   | Class 10.9, 100mm, M12, partially threaded  | 5        |
| McMaster-Carr Bolt                      | 91310A750      | B8                                                   | Class 10.9, 120mm, M12, partially threaded  | 3        |
| McMaster-Carr Bolt                      | 92316A595      | B9                                                   | Grade 8, 2.5", 5/16"-18, partially threaded | 2        |


# **Parts List**



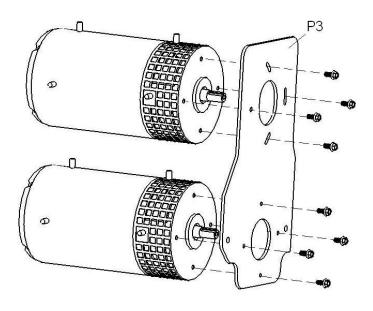
# **Parts List**



# **Motor Specifications**



# **Motor Mounting to Adapter Plates**


### Step 1:

Mount a motor to the lower portion of **P3** (back plate) with **B1** bolts. Secure the bolts using a standard torquing pattern.

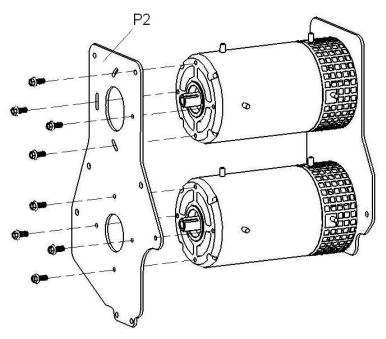
### Step 2:

Mount the other motor to the upper portion of **P3** also using **B1** bolts. Only tighten these bolts finger tight.

DO NOT torque the upper motor bolts down yet. This motor must remain mobile until the belt has been tensioned.



# **Motor Mounting to Adapter Plates**

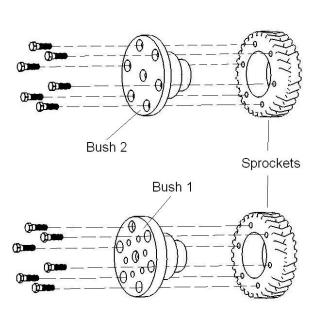

### Step 3:

Attach **P2** to the lower motor using **B2** bolts. Secure the bolts with a standard torquing pattern.

#### Step 4:

Secure the top half of **P2** to the upper motor using **B2** bolts. Only tighten these bolts finger tight.

DO NOT torque the upper motor bolts down yet. This motor must remain mobile until the belt has been tensioned.



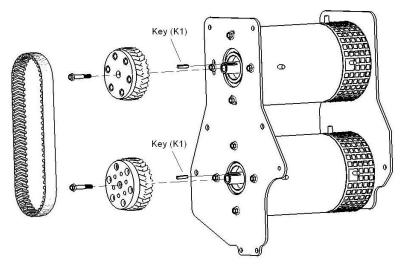

# **Motor Coupling System Installation**

10

#### Step 5:

Attach the sprockets to the bushings using **B3** bolts. Secure with a standard torquing pattern. Make sure to mount the sprockets in the same orientation. It does not matter what orientation you choose.




### Motor Coupling System Installation

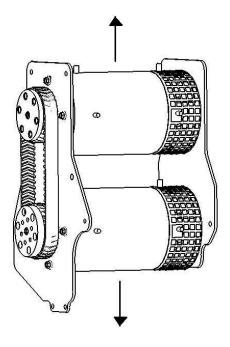
#### Step 6:

Place a **K1** key in each of the motor shaft keyways. Line up the keyway of the bushings and firmly press the bushings onto the motor shafts. Make sure that **Bush 1** goes on the lower motor. Secure the bushings to the center of the motor shafts with **B9** bolts.

#### Step 7:

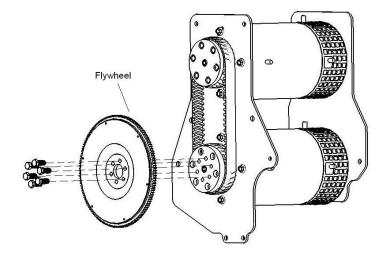
While the upper motor has not been torqued down and it is in its lowest position, slide the **Belt** onto the sprockets minding the orientation. The belt should not be taut at this time.




#### Motor Coupling System Installation

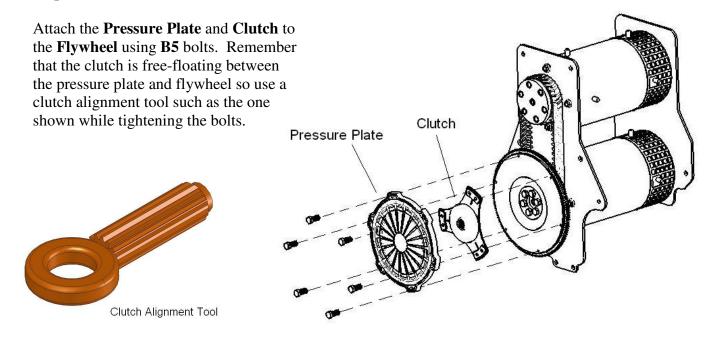
#### Step 8:

The belt now needs to be tensioned to a force of 560 lbs. The upper motor can be torqued to achieve this tension. Once the tension has been reached, torque down the **B1** and **B2** bolts in the upper motor in a standard torquing pattern.


#### **NOTE:**

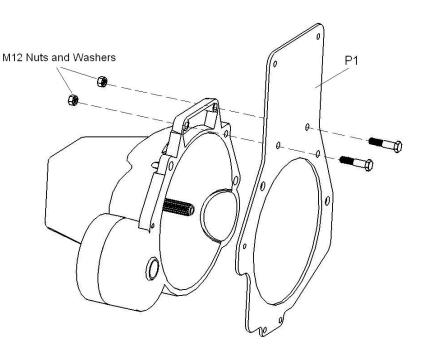
There are many ways to obtain the necessary tension in the belt. Suggestions include using a scissor jack between the motors, or suspending the system by the upper motor and applying additional weight. Special instrumentation may be needed.




Step 9:

Attach the **Flywheel** to **Bush 1** using **B4** bolts. Secure the bolts in a standard torquing pattern.

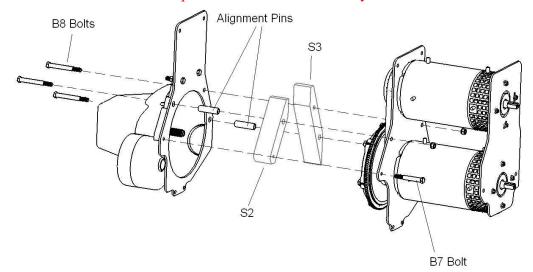



### **Clutch and Pressure Plate Installation**

### **Step 10:**

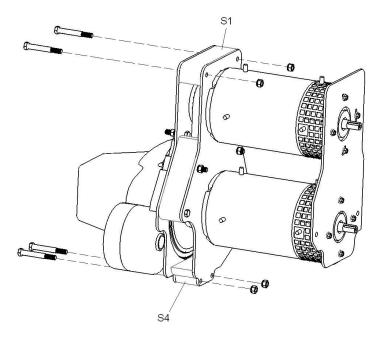


Step 11:


Attach the **P1** adapter plate to the transmission. Use two **B6** bolts through the front of the plate and out the back of the transmission. Secure the bolts with **M12 Nuts and Washers**.



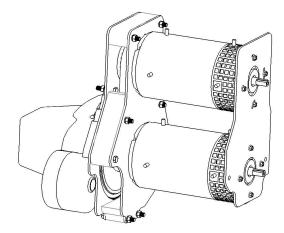
#### **Belt Housing and Adapter Plate Assembly**

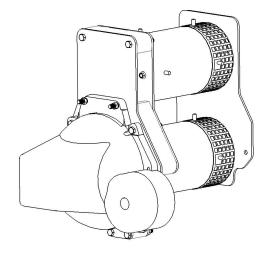

#### Step 12:

Insert the alignment pins through **P1** into their respective slots on the transmission as shown. Slide spacers **S2** and **S3** over the alignment pins. With the spacers in place, align **P2** over the alignment pins. The clutch should easily slide onto the transmission shaft. Inserting **B8** bolts from the transmission side, secure the plates and spacers with **M12 nuts and washers** on the **P2** side. Insert the **B7** bolt from the **P2** side and screw it into the transmission. DO NOT torque down the nuts and bolts yet.



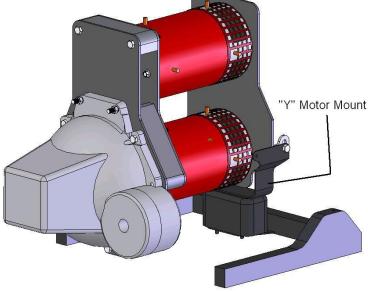
# Step 13:


Slide spacers S1 and S4 between the plates as shown. Insert B7 bolts from the transmission side, going through the spacers and secure them with M12 Nuts and Washers on the P2 side. Torque all nuts and bolts from steps 12 and 13 in a standard torquing pattern.




# **Belt Housing and Adapter Plate Assembly**

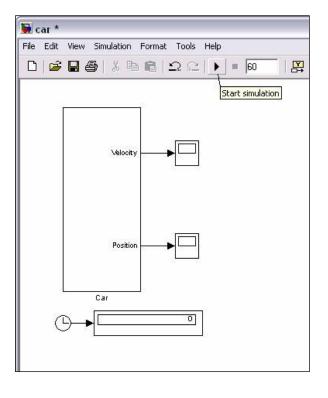
# **Completion:**


Congratulations! The drive train is now fully assembled. Double check to make sure all bolts are firmly secured and there are no noticeable misalignments.





# **Tips for Drive Train Installation**


- Lower the Drive train into the motor compartment using an engine hoist.
- Align and mount the transmission to its original mounting brackets.
- Use pre-existing engine mounts to secure the drive train. Use brackets to attach the back plate (P3) to "Y" motor mount. The engine bay torsion bar should also be utilized.



# **BJ CANE Vehicle Dynamics Simulation Instructions**

#### **Run Simulation:**

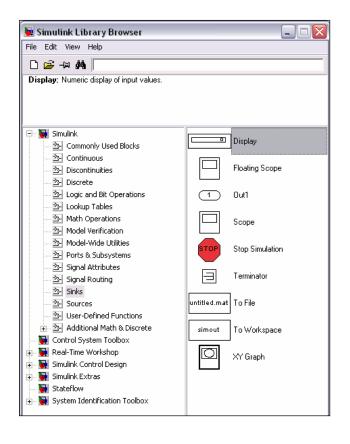
Click on the play symbol on the toolbar or select "Start" under the "Simulation" menu.



### **BJ CANE Vehicle Dynamics Simulation Instructions**

#### **Changing Parameters:**

Double click on the "Car" block. Change any values and click ok. To change values specific to car subcomponents, right click on the "Car" block and select "Look Under Mask." This will open a block diagram of all the subcomponents. Double click on any subcomponent block to change its parameters.


| Source Block Parameters:    | Car    | ×    |
|-----------------------------|--------|------|
| Subsystem (mask)            |        |      |
|                             |        |      |
| Parameters                  |        |      |
| Target:                     |        |      |
| 60                          |        |      |
| Mass (lbf):                 |        |      |
| 3000                        |        |      |
| Radius (ft):                |        |      |
| I<br>Motor Constant:        |        |      |
| .33                         |        |      |
| Frontal Area (It^2):        |        |      |
| 22.47                       |        |      |
| Air Density (lbf / ft^3):   |        |      |
| .075                        |        |      |
| Tire Friction Coeff:        |        |      |
| 2.5                         |        |      |
| Start Gear:                 |        |      |
| 2                           |        |      |
| Shift Time (sec):           |        |      |
| .2                          |        |      |
| Unknown Efficiencies:       |        |      |
| 1                           |        |      |
| Stop Simulation: Time is Up |        | •    |
| Dynamics: Force             |        | •    |
| Tire Slipping: No Slipping  |        | •    |
| ✓ Drag                      |        |      |
| Shifting                    |        |      |
|                             |        |      |
| ОК                          | Cancel | Help |

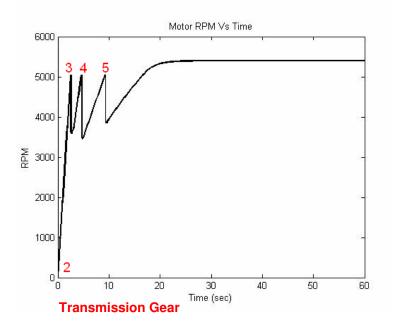
| 🐱 car *                                     |                                                             |          |  |  |  |
|---------------------------------------------|-------------------------------------------------------------|----------|--|--|--|
| File Edit View Simulation Format Tools Help |                                                             |          |  |  |  |
| 🗅 🖻 🖬 🎒                                     | ՝ հ 🖻 🖻   Ω 🗠   )                                           | 60       |  |  |  |
|                                             | Vélocity                                                    | _        |  |  |  |
|                                             | Mask Parameters<br>SubSystem Parameters<br>Block Properties |          |  |  |  |
|                                             | Fixed-Point Settings                                        | -1       |  |  |  |
|                                             | Edit Mask                                                   | _        |  |  |  |
|                                             | Look Under Mask<br>Link Options                             | ▶        |  |  |  |
| _                                           |                                                             | <u>_</u> |  |  |  |
| _                                           | Signal & Scope Manager                                      | _        |  |  |  |
|                                             | Port Signal Properties                                      | •        |  |  |  |
|                                             | Format                                                      | •        |  |  |  |
|                                             | Foreground Color                                            | •        |  |  |  |
|                                             | Background Color                                            | <u>•</u> |  |  |  |
|                                             | Help                                                        |          |  |  |  |
|                                             |                                                             |          |  |  |  |

# **Driving Instructions & Tips**

#### **Signal Viewing:**

To view the simulation signals double click on the "Scope" block associated with the signal. If there is no scope attached to the signal you wish to see or you would rather see the signal in a different manner, type "simulink" in the Matlab command line. This will open a new window titled "Simulink Library Browser." Double click on the "Sinks" button in the new window. A list of all signal sinks will appear. Drag the desired sink into the model and attach the signal to it. To split an already existing signal, hold the "Ctrl" button and drag from the signal to the sink.




#### **Before Initial Run:**

- NEDRA compliant shielding is required.
- Water and Dust should be isolated from the drive train system.
- Break in the brushes of the motors by running them with no applied load at low voltage. i.e. one deep-cycle battery
- The first time the motors are run as part of the drive train system, make sure the clutch is depressed. This will ensure the clutch is aligned correctly. Make sure to use a low voltage.
- Never run the motors near max voltage ( $\approx$ 196 V) with the clutch depressed or no applied load.
- The drive train system will require instrumentation to monitor motor RPM, temperature, etc.
- Running motors at low RPM for extended periods of time may cause the motors to overheat. The addition of forced-air cooling is advised.
- For enhanced cold weather performance, use a light-weight oil for the transmission.

### **Driving Instructions & Tips**

#### On the Road:

- Under normal driving conditions, start in second gear. First gear is only necessary for very low speeds and steep inclines.
- For maximum acceleration, start in second gear. Shifts should occur at 5000 RPM (see graph).
- In the case of drive train failure, immediately pull the emergency cut-off breaker and put the car in neutral.

